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Abstract. Over the last decade GPUs have been established as com-
pute accelerators. However, GPU performance is highly sensitive to many
factors, e.g. memory access patterns, branch divergence, the degree of
parallelism and potential latencies. Consequently, the execution time
on GPUs is a difficult to predict measure. Unless the kernel is latency
bound, a rough estimate of the execution time on a particular GPU
could be provided by applying the roofline model. Though this approach
is straightforward, it cannot not provide accurate prediction results. In
this thesis, after validating the roofline principle on GPUs by employ-
ing a micro-benchmark, an analytical performance model is proposed.
In particular, this improves on the roofline model following a quantita-
tive approach and a completely automated GPU performance prediction
technique is presented. In this respect, the proposed model utilizes micro-
benchmarking and profiling in a “black-box” fashion as no inspection of
source/binary code is required. It combines GPU and kernel parameters
in order to characterize the performance limiting factor and to predict
the execution time, by taking into account the efficiency of beneficial
computational instructions. In addition, the “quadrant-split ’ visual rep-
resentation is proposed, which captures the characteristics of multiple
processors in relation to a particular kernel. The experimental evaluation
combines test executions on stencil computations, matrix multiplication
and a total of 28 kernels of the Rodinia benchmark suite. The observed
absolute error in predictions was 27.66% in the average case. Special cases
of mispredicted results were investigated and justified. Moreover, the
aforementioned micro-benchmark was used as a subject for performance
prediction and the exhibited results were very accurate. Furthermore, the
performance model was also examined in a cross vendor configuration by
applying the prediction method on the AMD HIP/ROCm programming
environment. Prediction errors were comparable to CUDA experiments
despite the significant architectural differences of different vendor GPUs.
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1 Dissertation Summary

1.1 Introduction

The main focus of GPU computing is about performance so it would be of great
significance to be able to predict performance of GPU applications on a wide
range of hardware. Performance modeling information is particularly important
that can be exploited for either the consideration of a hardware upgrade or even
on taking important optimization decisions. However, performance impact of
migrating to a GPU accelerator or moving from one type of GPU to another can
be a puzzling process to predict. Performance bottlenecks can be different due
to architectural differences or variations on the balance of processor resources
between different types of processors.

CPUs do not require a vast amount of parallelism in order to yield decent
performance. They utilize large cache memory hierarchies that are able to allevi-
ate the long access latencies of main memory. In addition, they employ advanced
techniques in order to maximize the single threaded performance, e.g. aggressive
speculative execution, register renaming, result value forwarding, etc. All these
features potentially eliminate pipeline and memory bottlenecks, leading to more
predictable execution results.

On the other hand, GPUs are significantly more performance sensitive to
supplied parallelism, resource usage and memory access patterns. They are con-
sidered as massively parallel compute devices as they practically need thousands
of active threads in order to keep them occupied. This fact poses large problems
with abundant parallelism as a requirement. The GPUs feature much smaller
cache memories which in conjunction with the large amount of active threads
allows only limited use, mostly for exploiting the spatial locality between sibling
threads. The miss of large cache hierarchies forces programmers to effectively use
main memory. However, GPUs require regular memory accesses with specific
requirements in order to apply coalescing, which is a mandatory requirement
for efficient memory accessing. All reasons above induce potential bottlenecks
for GPU performance. Practical experience has proven that GPU performance
is sensitive to design decisions and fine tuning. In general, GPUs tend to be
less tolerant to naive programming practices in regard to performance. Overall,
though GPUs provide great compute performance, this can only be achieved on
problems that match their characteristics.

For all the reasons above this thesis is focused on proposing a performance
model that provides the necessary abstraction in order to be applicable on a
wide range hardware, yet it provides decent prediction accuracy, is quick and
straightforward to apply and can be fully automated based on black-box kernel
inspection. In addition, this model was developed as roofline based and as such
it is able to indicate an upper bound on performance, which can be fairly useful
to the programmer as a guidance, providing performance feedback for further
optimizations. The ultimate goal was to provide a tool that runs automatically
the whole performance prediction process by utilizing an existing GPU program
and producing the final results without user’s intervention.



1.2 Related work

The roofline model [12] introduced by Williams and Patterson, is a visual model
that provides insight on the maximum expected performance of a kernel by con-
sidering both pure computation and DRAM memory transfer requirements. It is
based on the assumption that performance is either bound on the compute po-
tential or the memory bandwidth of the underlying processor. The performance
bound is either one depending on the relative requirements of operations of the
application. Operational intensity is measured in flop/byte units and is used to
determine the limiting performance factor on a particular processor. This can be
applied by estimating the program’s operational intensity which is determined
by the program’s requirements as formula (1) indicates:
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Fig. 1. The roofline visual model for Intel Xeon E7-8857 v2.

Okernel =
Operations(compute)

Traffic(memory)
(1)

The operational intensity is measured in flop/byte units and it is depen-
dent on the application characteristics. Depending on the whether Okernel >
Throughputdev
Bandwidthdev

the kernel is considered as compute bound or memory bound. The
graphical representation of the roofline model is able to provide a quick and
insightful visual representation of the device theoretical peak performance. In
figure 1 the solid line represents the theoretical peak performance of an Intel
Intel Xeon E7-8857 v2 CPU depending on the program’s operational intensity.
In this example for program operational intensities up to 3.39 flop/byte the pro-
gram is considered as memory bound. Compute bound programs must exhibit
higher compute intensity.

1.3 Results

The proposed performance model, which is the primary contribution presented
within this thesis, is an analytical GPU performance model based on the roofline



model [12]. An early foundation of the proposed model was presented in a prelim-
inary stage as a regular conference paper [7] and subsequently it was extended
and published as an elaborate work in the form of a journal article [11]. The
first paper contribution [7] presented an initial form of the method along with
a limited number of experimental results. The relevant journal publication [11]
extended the method to a fully automated prediction process. The experimental
results included executions on a wide range of different real world kernels and a
micro-benchmark. The hardware used for the experiments included 4 consumer
and 2 professional GPUs. Furthermore, the proposed model was extended to the
experimental use on a cross-vendor GPU environment by employing an AMD
GPU and the exhibited results were quite promising.

Other contributions that have been used in this thesis include an implemen-
tation of a red-black SOR stencil computation method [9, 10] which has been
utilized in the experiments and it poses as a proof of concept case study in this
thesis. The reordering by color strategy was the primary contribution of this pub-
lished work. A theoretical performance analysis of the algorithm was provided
and the implementations included various kernels, each utilizing a different mem-
ory caching approach. Additionally, a set of developed LMSOR stencil compu-
tations [4–6] were also developed which served to investigate the re-computation
strategy as an optimization. In this respect various implementations were in-
vestigated characterized by different operational intensities due to the different
degree of re-computation applied. Implementations of this work were also applied
on the performance model in this thesis. Last, a set of micro-benchmarks [8] was
presented that serves to the purpose of better understanding of the hardware
capabilities regarding the GPU’s fast on-chip memories. The micro-benchmarks
assess the fast on-chip memories which include shared memory, L1 & L2 cache,
texture cache and constant memory cache.

2 Results and Discussion

2.1 The quadrant-split visual representation

The roofline visual model is a valuable abstract representation of the compute
device capability. As an alternative representation, the quadrant-split is proposed
where in the horizontal axis the memory bandwidth is used instead of the opera-
tional intensity. In this respect, a device can be represented by a single point on
the chart determined by its memory bandwidth and compute throughput peak
rates. A program can be represented by a half-line crossing the intersection of
the axes with a slope equal to its operational intensity. The half-line is the visual
bound for the distinction of the area into two parts where the kernel is expected
to behave as memory bound for the devices residing in the upper half-quadrant
and as compute bound for the others instead. For instance, figure 2 represents
the LBMHD problem with respect to 4 GPUs and a CPU. The dashed arrow
lines point to the estimated roofline performance points for the each device on
the particular problem.
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Fig. 2. The quadrant-split representation of the LBMHD problem using 5 CPU/GPUs.

2.2 The proposed performance prediction method

A profiling approach on a reference GPU is employed by extracting kernel exe-
cution information without requiring any internal knowledge of the kernel char-
acteristics. The parameters used for the GPU device that is targeted for per-
formance prediction are extracted by running a set of micro-benchmarks. The
combination of both sets of parameters are employed for the performance pre-
diction procedure. The whole process involves the steps described in figure 3.

Hardware metric 
profiling on

reference GPU
(table 1)

Kernel
parameters

(table 2)

Performance 
modeling on 
target GPU

Target GPU
parameters

(table 3)

micro-benchmark 
execution on 
target GPU

Reference
GPU

Target GPU
performace
prediction

Target
GPU

GPU 
Kernel

Fig. 3. The performance prediction methodology flow diagram.

In general, the approach for performance estimation of GPU kernels can be
summarized in three aspects:

– Modeling compute and memory parameters of GPU kernels, largely inde-
pendently of GPU architectural details, obtained by using a “black box” ap-



proach based exclusively on profiling measures (figure 3: ”Hardware metric
profiling on reference GPU”)

– Modeling the GPU generic peak performance ratings on various operations,
obtained by micro-benchmarking the target GPU (figure 3: ”micro-benchmark
execution on target GPU”)

– Estimation of the target GPU performance (figure 3: ”Performance modeling
on target GPU”) on the particular kernel according to:

• the estimated maximum rate of executed compute operations on the
target GPU for the particular kernel, and

• the compute and memory demands of the given kernel (i.e. operational
intensity) determining whether its performance is limited by the compute
or memory throughput when executed on the target GPU

Kernel parameter extraction The required kernel parameters are extracted
by profiling the execution of the subject kernel on a reference GPU. The list of
the required kernel metrics is shown in table 1 and the provided notation will
be used for reference.

Table 1. The NVidia profiler metrics required for the derivation of kernel parameters.

Metric Notation Description

flop count sp fma Mfma32

Number of single-precision floating-point

multiply-accumulate operations executed

by non-predicated threads

flop count dp fma Mfma64

Number of double-precision floating-point

multiply-accumulate operations executed

by non-predicated threads

inst compute ld st Mldst

Number of compute load/store instructions

executed by non-predicated threads

inst executed Minst The number of instructions executed

inst fp 32 Mfp32

Number of single-precision floating-point

instructions executed by non-predicated

threads (arithmetic, compare, etc.)

inst fp 64 Mfp64

Number of double-precision floating-point

instructions executed by non-predicated

threads (arithmetic, compare, etc.)

inst integer Mint

Number of integer instructions executed

by non-predicated threads

dram read transactions Mtran-r Device memory read transactions

dram write transactions Mtran-w Device memory write transactions

The produced parameter set is provided in table 2. Ktype parameter deter-
mines the type of beneficial operations within the kernel. It can be either fp64,
fp32 or int. A simple rule based approach in order to avoid user interaction is
a function selecting fp64 if the Mfp64 metric is non zero, fp32 if the Mfp32 is
non zero or int otherwise. The Wcomp parameter represents the total beneficial
compute operations performed by the kernel. It is evaluated by formula (2).



Table 2. The set of required kernel parameters in the proposed performance model.

Parameter Description Obtained

Ktype Dominant ops (fp64, fp32 or int) rule based function
Wcomp Compute operations formula (2)
Wtraf DRAM bytes accessed formula (3)
Emix Operation mix efficiency (%) formula (4)
Dops Operation instruction density (%) formula (5)
Dldst Ld/St instruction density (%) formula (6)
Dother Other instruction density (%) formula (7)

Wcomp =


Mfp32 +Mfma32, if Ktype = fp32

Mfp64 +Mfma64, if Ktype = fp64

Mint, if Ktype = int

(2)

The parameter regarding the conducted memory traffic is the Wtraf and it
is estimated by using the DRAM transaction count metrics as shown in formula
(3):

Wtraf = 32× (Mtran-r +Mtran-w) (3)

The efficiency of compute instructions Emix is defined as shown in formula
(4) which involves the type of compute instructions executed.

Emix =


Mfp32+Mfma32

2×Mfp32
× 100%, if Ktype = fp32

Mfp64+Mfma64

2×Mfp64
× 100%, if Ktype = fp64

50%, if Ktype = int

(4)

Finally, the instructions executed are classified in 3 different types (compute,
load/store and other instructions) and the individual density of each type in the
instruction stream is determined by formulae (5), (6) and (7):

Dops =
Iops
Itotal

× 100% (5)

Dldst =
Mldst

Itotal
× 100% (6)

Dother = 100%−Dops −Dldst (7)

where Iops and Itotal are estimated by formulae (8) and (9):

Iops =


Mfp32, if Ktype = fp32

Mfp64, if Ktype = fp64

Mint, if Ktype = int

(8)

Itotal = 32×Minst (9)



Target GPU parameter extraction All required device parameters are col-
lected by using micro-benchmarks and are shown in table 3. All floating point
computation throughput parameters (TSP and TDP ) concern MAD (Multiply-
ADd) operations. The Txxx parameters (TSP , TDP , Tint, Tadd, Tldst) regard the
compute throughput of the device in various types of instructions and the Bmem

parameter which reflects the effective memory bandwidth of the device.

Table 3. The set of GPU parameters used in the performance model.

Parameter Description Unit

TSP Single precision floating point operation throughput GFLOPS
TDP Double precision floating point operation throughput GFLOPS
Tint Integer multiply-add operation throughput GIOPS
Tadd Integer addition operation throughput GIOPS
Tldst Load/Store instruction throughput on shared memory GOPS
Bmem Memory bandwidth GB/sec

Kernel performance estimation In this model the throughput of various in-
struction types is considered for the efficiency estimation of instruction execution
regarding beneficial computation. The purpose is to estimate the attainable peak
throughput by considering the portion in which the pipeline is available for the
execution of beneficial instructions. In this regard the instruction type densities
(Dops, Dldst, Dother) should be considered in order to provide an estimation on
the overall instruction execution throughput on the particular kernel.

The peak throughput on raw beneficial operations is selected in (10):

Top =


TSP , if Ktype = fp32

TDP , if Ktype = fp64

Tint, if Ktype = int

(10)

For the estimation of the instruction execution efficiency the instruction den-
sities along with the instruction throughput for various types are considered.
The instruction types considered correspond to the throughput parameters of
the GPU (table 3). The fastest instruction on the GPU typically is the single
precision multiply-add instruction, and therefore it is the instruction that poten-
tially is used to execute the most operations per second. So, the single precision
multiply-add instructions are used as a point reference. The weight factor of
executing a type of instruction is defined as the throughput ratio of fast single
precision floating point instructions to the throughput of the particular type of
instructions. Thus, weight factor is normalized by setting the weight of single
precision instructions to 1. Therefore, the weight of all other instructions is typ-
ically greater or equal to 1. In this regard we define the weight factor operators
as follows in formulae (11), (12), (13):



Wop =
TSP

Top
(11) Wldst =

1/2TSP

Tldst
(12) Wother =

1/2TSP

Tadd
(13)

In the estimation of Wother the throughput of integer addition is used. This
is an arbitrary decision based on the assumption that the rest of the instructions
apart from computation and load/store, is constituted mostly of simple integer
instructions or instructions that execute roughly with the same cost. The 1⁄2
factor in (12) and (13) is applied in order to convert the operation throughput
rate TSP to instruction execution rate as each floating point MAD instruction is
accounted as 2 operations. All beneficial operations are assumed to be executed
using MAD instructions (two operations per instruction) whereas the load/store
and integer addition operations are assumed to be implemented with single op-
eration instructions. By taking into account the instruction densities and the
respective weight factors the relative execution cost of each instruction type can
be defined as shown in (14), (15), (16):

Cop = Dops ×Wop (14)

Cldst = Dldst ×Wldst (15)

Cother = Dother ×Wother (16)

The estimated instruction efficiency can be estimated by formula (17):

Einstr =
Cop

Cop + Cldst + Cother
× 100% (17)

This cost modeling for the instruction execution assumes that all instructions
are executed by the GPU multiprocessor on a single pipeline and therefore the
execution of different types of instructions cannot be co-issued in a super-scalar
fashion.

The adjusted throughput is estimated by applying both efficiency ratios
each decreasing the theoretical instruction throughput by a factor. The adjusted
throughput is given in (18):

T ′
op = Emix × Einstr × Top (18)

As such, the kernel’s operational intensity is Okrn = Wcomp/Wtraf and the
device’s adjusted operational intensity is Odev = T ′

op/Bmem. The comparison of
the two intensities is used to determine whether the application is considered to
behave as memory or compute bound. Thus, the estimated compute throughput
is given by (19):

Tpredicted =

{
T ′
op, if Okrn > Odev

Okrn ×Bmem, if Okrn ≤ Odev

(19)



2.3 Experimental evaluation

The executed experiments include two variants of stencil computations (red/black
SOR & LMSOR) [9, 10], a matrix multiplication (SGEMM) kernel and a large
subset of the Rodinia benchmark suite[3]. The experiments were applied on 6
different GPUs, characterized by 4 different architectures. The prediction pro-
cedure on red/black stencil computations, SGEMM and Rodinia benchmarks
exhibited an average APE 3.42%, 15.18% and 28.97%, respectively. By summa-
rizing all prediction results it is concluded that out of all conducted experiments
more than half of them exhibited less than 25% APE (Absolute Percentage Er-
ror). This is considered a significant achievement given the small set of input
that is used by the method.

In order to assess the performance prediction method in a cross vendor en-
vironment, the HIP/ROCm platform of AMD was chosen because of its CUDA
kernel source code compatibility feature. By porting a CUDA implementation
to HIP, the kernel source code effectively remains the same. This allows the pro-
filing procedure to be performed on NVidia hardware by either using the CUDA
application or the HIP application itself as HIP provides a compatibility layer
for both hardware platforms.

The HIP programming environment was applied as supported by ROCm
1.4.0 release, on Ubuntu 14.04 Linux 64bit, using an AMD R9-Nano GPU. The
kernel parameters were extracted on the GTX-480 and used for the performance
prediction model on the AMD GPU. The required benchmarks were also ported
to HIP platform and they were used to generate the R9-Nano GPU parameters.

The applied problems were the red/black SOR stencil computation, SGEMM
and the lavaMD benchmark from the Rodinia suite (lvmd-krn). Running the
performance model yields the execution times shown in table 4. It is evident
that the observed prediction errors are very comparable to the ones produced
on NVidia GPUs. Out of the 3 kernels, lvmd-krn exhibited slightly higher APE.

Table 4. Prediction results on the R9-Nano GPU for red/black SOR, SGEMM and
lvmd-krn kernels

Predicted time Measured time Error
Benchmark (msecs) (msecs) (%)

red/black SOR 7.75 8.72 -11.18%
SGEMM 0.83 0.94 -11.45%
lvmd-krn 46.27 54.57 -15.21%

In general, it is expected to observe slightly higher APEs on the AMD plat-
form due to the architectural differences between the two different vendor GPU
architectures. These differences could slightly differentiate the extracted kernel
parameters between the two architectures. However, this is not expected they
change dramatically allowing the use of the performance prediction method in
cross architecture environments, in the same way it was applied on this experi-
ment.



3 Conclusions

This thesis presents an analytical performance model that derives from the
roofline model [12]. Through a quantitative approach, the proposed model is
able to provide timings that approximate actual execution measurements on
real hardware. In addition, an alternative visual representation approach was
presented, named quadrant-split , which is insightful in cases of multiple com-
pute devices being represented along with a single application characterized by
a particular operation intensity. The merit of the model’s simplicity and its high
abstraction characteristic allows providing results, final and intermediate, that
can be easily interpreted by the final developer by being more human friendly.
The small amount of required parameters pose the method as readily applicable.

One of the key points of the proposed method is the ability to extract the
kernel’s parameters by exploiting a mere set of profiling metrics as input pa-
rameters. This is captured through a kernel profiling procedure in a black-box
fashion. Any internal knowledge of the kernel structure itself is not required by
the developer. Furthermore, the proposed method can be developed as an auto-
mated tool which is executed without intervention from the developer. In this
regard, the developer can apply the method on kernels and use it as a guidance
tool without previous inspection the kernel design itself.

The proposed method achieves a better understanding of both compute and
memory workloads compared to a pure theoretical peak approach primarily for
two reasons. First, both the execution of non-essential and load/store instruc-
tions are considered by modeling their implications in the instruction pipeline
and thus, their impact on the effective peak performance on beneficial instruc-
tions. Additionally, the type of mix of compute operations is also taken into ac-
count, i.e. the proportion of effective multiply-add operations in total amount of
compute instructions. Second, the memory traffic requirements are measured by
considering the actual traffic, thus any trivial locality and the degree of memory
access coalescing are being indirectly accounted. The model provides an adjusted
roofline on the peak performance based on these considerations.

The proposed performance model was tested and validated on a wide range
of real world kernels. It was applied on stencil computations (red/black SOR
and LMSOR), matrix multiplication and a wide range of Rodinia suite kernels.
Furthermore, it was also tested for cross-vendor applicability on the HIP pro-
gramming environment [2, 1] of the ROCm platform which is developed by AMD.
The results were quite promising as they were similar to CUDA prediction in
terms of absolute errors, despite the broader architectural differences between
different vendor GPUs. The exact performance is dependent on special issues as
the exact instruction mix, variability in cache behavior, pipeline latencies, the
available parallelism and additional latencies which push performance to lower
levels than the predicted ones, as the proposed model does not take into account
these factors. Nevertheless, in these cases the performance prediction measure-
ments serve as an upper bound performance and they indicate the potential
room for improvement with further optimizations.
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